Статистика

Физико-химические основы восстановления

Конструкции реакторов и печей восстановления

Восстановление четыреххлористого титана магнием сопровождается выделением большого количества тепла. Энтальпия суммарной реакции в стандартных условиях составляет 123,6 ккал/г-атом титана. В современных реакторах тепловыделение составляет около 100-200тыс.ккал/ч. Значительная часть этого тепла должны быть отведена от реактора. проект варочной печи для кладки

Объемные соотношения титана, магния и хлористого магния в реакторе таковы, что на каждую единицу объема, занимаемого титаном, приходится 2,8 единиц объема магния и 10,4 единицы объема образующегося хлорида магния. Поэтому для более полного использования рабочего объема реактора, хлористый магний в процессе восстановления периодически сливают из реактора.

В качестве реакторов восстановления в промышленных условиях используют цилиндрические реакторы диаметром от 850-1000 до 1300-1500мм и высотой от 1800-2000 до 3000мм. Диаметр реактора восстановления в основном лимитируется требованиями последующего процесса – вакуумной сепарации блока реакционной массы, где повышение диаметра реактора больше определенного значения приводит к ухудшению условий прогрева реакционной масса и отгонки остатков магния и хлористого магния из глубинных слоев титановой губки.

Реакция восстановения магнием проводится в реакторах из малоуглеродистой стали, из хромоникелевой, хромистой сталей, а также в реакторах из биметалла (наружный слой – хромоникелевая сталь, а внутренний – малоуглеродистая сталь).

На практике, учитывая очаговый характер реакций восстановления, в результате которого максимальная температура внезапно резко возрастет то в одной, то в другой зонах реактора, процесс обычно проводят при температуре 750–900°C.

Хромоникелевая сталь более окалиностойка и более устойчива при взаимодействии с парами в условиях высоких температур, чем малоуглеродистая сталь. Однако температура плавления эвтектики этой стали с титаном ниже, чем с малоуглеродистой сталью, на 900–100°C. Кроме того, находящийся в реакторе жидкий магний хорошо растворяет никель, входящий в состав хромоникелевой стали, загрязняется им и загрязняет титановую губку. Тем не менее, эти стали широко применяются для изготовления реакторов.

Хромистые стали типа 0Х13, Х25Т, обладая средней между малоуглеродистой и хромоникелевой сталью температурой плавления эвтектики с титаном и досочной окалиностойкостью, являются также более устойчивыми против взаимодействия с парами при высокой температуре, и меньше чем хромоникелевые стали растворяются в расплавленном магнии, поэтому их использование в качестве материала благоприятно.

Большой интерес для изготовления реакторов представляют биметаллы. Использование таких сталей с внутренней поверхностью из малоуглеродистой стали, стали Х25Т или титана несмотря для большую трудность в изготовлении реакторов и несколько большую их стоимость позволяет заметно повысить производительность аппарата и улучшить качество получаемого титана,.

В промышленных условиях используют обычно два типа реакторов – реактор со вставленным внутрь реакционным стаканом, изготовленным из рассмотренных выше материалов, и реактор без реакционного стакана. Реакционный стакан позволяет предохранить корпус реактора от проплавления, применить реактор из нержавеющей стали, а стакан из малоуглеродистой стали. Кроме того он облегчает извлечение реакционной массы из реактора после окончания процесса восстановления. С другой стороны, при использовании стакана образуется зазор между его стенкой и стенкой реактора, который резко ухудшает условия отвода тепла из зоны реакции, сокращает полезный объем реактора, что снижает его производительность. Кроме того, осложняется устройство для слива хлористого магния, в зазоре между стенками могут образовываться низшие хлориды титана. Внутреннюю поверхность такого реактора после каждого процесса необходимо тщательно очищать от хлоридов титана и магния, промывая раствором соляной кислоты. Эта операция трудоемка, вредна для обслуживающего персонала и приводит к повышенному износу реактора.

Недостаток реактора без стакана состоит в большей опасности проплавления корпуса, а также в необходимости более маневренного охлаждения его стенок в процессе восстановления во избежании намораживания на них гарнисажа, что может затруднить транспортировку магния в зону реакции.

Перейти на страницу:
1 2 3